|
Sven Johannsen 09.11.2013 Meeting C++ Düsseldorf |
sven@sven-johannsen.de |
A short example for the erase-remove idiom
vector<int> v; v.push_back(0); v.push_back(5); v.push_back(2); v.push_back(3); // use the erase-remove idiom to remove all elements with the value 5 v.erase(remove(v.begin(), v.end(), 5)); v = vector<int>(v.begin(), v.end()); // free unused capacity
vector<int> v = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// vector<int> v(10); iota(begin(v), end(v), 0);
// use the erase-remove idiom to remove all elements with the value 5
v.erase(remove(begin(v), end(v), 5));
v.shrink_to_fit(); // free unused capacity
C++98 / C++03
C++11 Language change
|
TR1(2005)
C++11 Standard library
|
Boost Subset 1(2000-...)
Boost Subset 2
|
Problem: Different syntaxes for initializing
struct A { int i; int j; };
struct B { B(int ii, int jj); /* ... */ };
C++98
A a = { 1, 3 };
B b(1, 3);
C++11 Uniform initialization (N2532)
// Aggregates (e.g. arrays and structs):
A a1 = { 1, 3 }; // Initialize members from begin-to-end
// Non-aggregates: Invoke a constructor.
B b1 = { 1, 3 };
// alternative syntax
A a2 { 1, 3 };
B b2 { 1, 3 };
C++98
int arr[] = {1, 2, 3};
vector<int> v;
v.push_back(1); v.push_back(2); v.push_back(3);
C++11
Initializer Lists (N2672)
#include <initializer_list>
template <class T> // ignoring allocators
class vector {
// ...
vector(initializer_list<T>); // initializer list constructor
vector(size_type n, const T& value); // other constructor
//...
};
vector<int> vec1 = { 10, 2 }; // vector::vector(initializer_list<T>);
vector<int> vec2(10, -1); // vector::vector(size_type n, const T& value);
All STL containers support uniformed initialization
vector<int> v({ 2, 3, 5, 7, 11, 13, 17 });
list<int> l = { 0, 1, 2, 3, 4, 5, 6 };
map<int, string> m { { 1, "one" }, { 2, "two" } };
valarray<double> v = { 1.0, 0.1, 0.001, 0.0001 };
// same for deque, forward_list, set, string, regex
// unordered_map, unordered_set, multi_..
// but not for: queue, priority_queue and stack
// aggregate initialization
array<double,4> a = { 1.0, 0.1, 0.001, 0.0001 };
and some algorithms too
Most containers overload some additional member functions for initializer_list<T>.
vector<int> v = { -1, -2, -3 }; // v = -1, -2, -3
v = { 1, 2, 3 }; // operator=() v = 1, 2, 3
v.insert(end(v), { 4, 5, 6 }); // v = 1,2,3,4,5,6
v.assign({ -1, -2, -3 }); // v = -1, -2, -3
(All STL containers = {string, deque, forward_list (insert_after()), list, vector, map, multimap, set, multiset, unordered_map, unordered_multimap, unordered_set, unordered_multiset })
initializer_list<class E>
#include <initializer_list>
...
template<class E> class initializer_list {
public:
// some typedefs
initializer_list() noexcept; // default constructor
size_t size() const noexcept; // number of elements
const E* begin() const noexcept; // first element
const E* end() const noexcept; // one past the last element
};
initializer_list<string> strings = { "C++", "is", "cool!" };
initializer_list in user defined containers
template<class T>
MyVector<T>::MyVector(initializer_list<T> i_list)
{
reserve(i_list.size());
for(auto iter = i_list.begin(); iter != i_list.end(); ++iter)
push_back(*elem);
// for(const auto& T elem : i_list)
// push_back(elem);
}
// usage
MyVector<int> v = { 2, 3, 5, 7 };
initializer_list is not limited to container
void print_some_doubles(initializer_list<double> doubles)
{
for(double d : doubles)
cout << d << " ";
}
...
print_some_doubles({ 1, 2, 3 });
Copy semantic can result in performance issues.
vector<string> v;
v.push_back("C++");
v.push_back("Boost");
// Hint: emplace_back beats move semantic
C++11 introduce move semantic into the language to reduce the number of new / delete calls.
Temporary objects ("objects without a name"):
a+b+c)
basic_string& operator=(const basic_string& str); // l-value reference
basic_string& operator=(basic_string&& str) noexcept; // r-value reference
Designed for objects which uses of dynamic memory, like STL containers
Looks like moving the objects, but only the content is moving
vector:
vector(vector&&);operator= (vector<T,Allocator>&& );void push_back(T&& x);insert(const_iterator position, T&& x);
vector<string> v;
string text("C++");
v.push_back(text); // copy "C++"
v.push_back("Use the boost library!"); // create a temp. string object
STL overloads many functions for improving the performance.
E.g. 12 different operator+() for the combination of string&, string&& and char*
The C++ and the STL "moves" only temporary objects ("objects without a name")
To move non-temporary objects, use std::move() to mark an object as r-value reference.
vector<int> temp = { 1, 2, 3 };
vector<int> result = { };
result = std::move(temp);
//result = static_cast<vector<int>&& >(temp);
assert(temp.size() == 0);
assert(result.size() == 3);
assert(result[0] == 1 && result[1] == 2 && result[2] == 3);
Examples:
ifstream open_file(const string& filename) { ... }
unique_ptr<MyDocument> document_factor(Param param) { ... }
vector<unique_ptr<MyDocument>> documents;
documents.push_back(document_factor(param));
(deque, list, vector, priority_queue)
Construct an element in the container. Forward all parameters to the constructor.
template <class... Args> void emplace_back(Args&&... args); template <class... Args> iterator emplace(const_iterator position, Args&&... args);
Example:
vector<string> field= { " " };
field.emplace_back("C++");
char* text = "Hallo";
field.emplace(field.begin(), text, text+6);
// field == "Hello", " ", "C++"
As efficient as a "C style" array, but with the interface of a STL container
int field[3] = { 1, 2, 3 };
array<int, 3> arr = { 1, 2, 3 };
cout << "size : " << arr.size() << endl;
for (auto it = arr.begin(); it != arr.end(); ++it)
cout << *it << " ";
cout << endl;
template <class T, size_t N>
struct array {
// some typedefs
// no constructor, no operator=() !
void fill(const T& u);
iterator begin() noexcept;
iterator end() noexcept;
// rbegin(), rend(), cbegin(), cend(), crbegin(), crend()
constexpr size_type size() noexcept; // max_size, empty
reference operator[](size_type n);
reference at(size_type n);
reference front();
reference back();
T* data() noexcept;
// plus const functions
};
array<int, 3> arr {}; // zero initialization
arr.fill(-11);
for (auto i : arr)
assert(i == -11);
iota(arr.begin(), arr.end(), 1);
int i = arr[0];
int j = arr.at(1);
int k = arr.back(); // last element
assert(i = 1 && j == 2 && k == 3);
int l = arr.at(10); // will throw an "out of range" exception
4 new hash_maps (associative containers):
Similar to map, multimap, set and unordered_multiset, with different requirements for the key and different storage.
The naming tries to avoid breaking existing code.

map<string, int> index = { { "C++", 1 }, { "Boost", 42 } };
unordered_map<string, int> fast_index = { { "C++", 1 }, { "Boost", 42 } };
map<string, int> index;
// same as:
map<string, int, less<string> > index;
struct PersonLess
{
bool operator()(const Person& l, const Person& r)
{
return l.Name() < r.Name();
}
};
map<Person, Account, PersonLess> AccountInfo;
unordered_map<string, int> fast_index;
// same as:
unordered_map<string, int, hash<string>, equal_to<string> > fast_index;
struct PersonHash
{
size_t operator()(const Person& p)
{
return hash<string>()(p.Name());
}
};
// for the case of collitions
struct PersonEquality
{
bool operator()(const Person& l, const Person& r)
{
return l.Name() == r.Name();
}
};
unordered_map<Person, Account, PersonHash, PersonEquality> FastAccountInfo;
Hash functions are available for
Minimal list implementation, which avoid expensive operations (e.g. back()).
*_after() functionsback(), push_back(), ...size() functionend()
template <class T, class Allocator = allocator<T> >
class forward_list {
public:
// some typedefs
explicit forward_list(); // 9 constructors
forward_list& operator=(initializer_list<T>); // +3
iterator begin() noexcept;
iterator end() noexcept; // + cbegin, ... but no rbegin()
bool empty() const noexcept; // no size()
void push_front(const T& x);
void pop_front();
iterator insert_after(const_iterator position, const T& x); // + 5
// ...
void sort();
void reverse() noexcept;
};
insert_after()STL container member functions like insert() need the access to the prior element.

cbegin, cend, crbegin, crend
const_iterator cbegin() const noexcept; const_iterator cend() const noexcept;
Better control of the used iterator type
void foo(const vector<int>& cv, vector<int>& ncv)
{ // C++98
for (vector<int>::const_iterator it1 = cv.begin(); it != cv.end(); ++it) {}
for (vector<int>::const_iterator it2 = ncv.begin(); it != ncv.end(); ++it) {}
// C++11
for (auto it = cv.begin(); it1 != cv.end(); ++it) {} // const_iterator
for (auto it = ncv.begin(); it2 != ncv.end(); ++it) {} // iterator
for (auto it = ncv.cbegin(); it3 != ncv.cend(); ++it) {} // const_iterator
(string, deque, vector)
void shrink_to_fit();
Ask for reducing capacity() to size().
Example:
// free unused capacity with a temp. object vector<int> tmp(v.begin(), v.end()); v.swap(tmp); // free unused capacity v.shrink_to_fit();
(vector, array)
T* data() noexcept; const T* data() const noexcept;
Return the address of the first element.
Example:
vector<BYTE> field = ...; legacy_function(BYTE* raw_data, int size); ... // C++98: address of the first element legacy_function(field.empty() ? NULL : &field[0], field.size()); legacy_function(field.empty() ? NULL : &field.front(), field.size()); // C++11 use data legacy_function(field.data(), field.size());
Element access with range check (throws, if the key is not present).
map<string, int> cont;
int val;
// C++ 98
val = cont["key"]; //(1) may add a default value to the map
auto it = cont.find("key");
if(it != cont.end()) //(2)
val = it->second;
// C++11
val = map.at("key"); //(3) throws "out_of_range", if key not present
begin() and end()begin() and end()Addition level of abstraction for an iterator access.
// vector<int> cont = { ... };
// int cont[] = { ... };
for(auto it = begin(cont); it != end(cont); ++it)
{
cout << *it << " ";
}
This code runs with any container (if non-member begin() and end() are overloaded).
C++14 will also introduce non-member cbegin, cend, rbegin, rend, crbegin and crend.
| A-M | N-Z |
|---|---|
all_of (is p true for all e in R?) |
is_partitioned (is R partitioned per p?) |
any_of (is p true for any e in R?) |
partition_point (find first e in R where p(e) is false) |
none_of (is p true for no e in R?) |
is_sorted (is R sorted?) |
find_if_not (find first e in R where p is false) |
is_sorted_until (find first out-of-order e in R) |
copy_if (copy all e in R where p is true) |
is_heap (do elements in R form a heap?) |
copy_n (copy first n elements of R) |
is_heap_until (find first out-of-heap-ordered in R) |
iota (assign all e in R increasing values starting with v) |
move (like copy, but each e in R is moved) |
minmax (return pair(minVal, maxVal) for given inputs) |
move_backward (like copy_backward , but each e in R is moved) |
minmax_element (return pair(min_element, max_element) for R) |
partition_copy (copy all e in R to 1 of 2 destinations per p(e)) |
R is a range, e is an element, p is a predicate.
(note: use <numeric> for iota)
C++ wrapper around strtol(), ...
int stoi(const string& str, size_t *idx = 0, int base = 10); long stol(const string& str, size_t *idx = 0, int base = 10); unsigned long stoul(const string& str, size_t *idx = 0, int base = 10); long long stoll(const string& str, size_t *idx = 0, int base = 10); unsigned long long stoull(const string& str, size_t *idx = 0, int base = 10); float stof(const string& str, size_t *idx = 0); double stod(const string& str, size_t *idx = 0); long double stold(const string& str, size_t *idx = 0);
std::string and std::wstringstd::invalid_argument, std::out_of_range)and back into a string
string to_string(int val); string to_string(unsigned val); string to_string(long val); string to_string(unsigned long val); string to_string(long long val); string to_string(unsigned long long val); string to_string(float val); string to_string(double val); string to_string(long double val);
to_wstring(...)stoi()
string text{ "3E8" };
int val{};
try
{
size_t index; // no initialization needed, only output!
val = stoi(text, &index, 16);
}
catch (const exception& ex)
{
cout << "Error : " << ex.what() << endl;
}
assert(val == 1000);
to_string()wstring text = to_wstring(15); wcout << text << endl;
void f()
{
// init
std::string name("A . . . long . . . Name");
MyObject* p = new MyObject(15);
OtherObject* q = getOtherObject("Bla");
try {
maybeThrowing(p); // may throw an exception, will be handled outside
otherFunction(q)
}
catch(...) {
delete q;
delete p;
throw;
}
delete q;
delete p;
}
shared_ptr smart pointer with a shared ownership of an objectweak_ptr weak reference to an object behind a shared_ptrunique_ptr very efficient smart pointer with move semanticmake_shared created the shared_ptr's control block and the object with one single memory allocationmake_unique Enables the same syntax for unique_ptr as make_shared.| C++98 | C++11 |
|---|---|
MyObject* foo()
{
string name("A...long...Name");
MyObject* p = new MyObject(15);
OtherObj* q = getOtherObj("Bla");
try {
maybeThrowing(q);
otherFunction(p)
}
catch(...) {
delete q;
delete p;
throw;
}
delete q;
return p;
}
|
shared_ptr<MyObject> foo()
{
string name("A...long...Name");
auto p = make_shared<MyObject>(15);
unique_ptr<OtherObj> q(getOtherObj("Bla"));
maybeThrowing(q.get());
otherFunction(p)
return p;
}
|
Create the created the shared_ptr's control block and the object with one single memory allocation.
struct DBConnec {
DBConnec(string dbname, string server, string securityInfo){}
};
// TR1
shared_ptr<DBConnec> dbConn1(new DBConnec("southwind", "localhost", "SSPI"));
// C++11
unique_ptr<DBConnec> dbConn2(new DBConnec("storm", "192.168.10.11", "none"));
// make_shared (C++11)
auto dbConn1 = make_shared<DBConnec>("southwind", "localhost", "SSPI");
// make_unique (C++14)
auto dbConn2 = make_unique<DBConnec>("storm", "192.168.10.11", "none");
this_thread::sleep_for(std::chrono::milliseconds(123));
A template class which exactly represents any finite rational number with a numerator and denominator representable by compile-time constants
template <intmax_t N, intmax_t D = 1>
class ratio {
public:
typedef ratio<num, den> type;
static constexpr intmax_t num;
static constexpr intmax_t den;
};
typedef ratio<1, 1000000000000000000000000> yocto; //see below typedef ratio<1, 1000000000000000000000> zepto; //see below typedef ratio<1, 1000000000000000000> atto; typedef ratio<1, 1000000000000000> femto; typedef ratio<1, 1000000000000> pico; typedef ratio<1, 1000000000> nano; typedef ratio<1, 1000000> micro; typedef ratio<1, 1000> milli; typedef ratio<1, 100> centi; typedef ratio<1, 10> deci; typedef ratio< 10, 1> deca; typedef ratio< 100, 1> hecto; typedef ratio< 1000, 1> kilo; typedef ratio< 1000000, 1> mega; typedef ratio< 1000000000, 1> giga; typedef ratio< 1000000000000, 1> tera; typedef ratio< 1000000000000000, 1> peta; typedef ratio< 1000000000000000000, 1> exa; typedef ratio< 1000000000000000000000, 1> zetta; //see below typedef ratio<1000000000000000000000000, 1> yotta; //see below
Simple conversion of SI units
template<class From, class To, class T>
T convert(T from)
{
typedef ratio_divide<From, To> result;
return from * result::num / result::den;
}
typedef ratio<1,1> base;
typedef ratio<1760 * 3600, 3937> mile;
cout << "2.0501 km as " << convert<kilo, base>(2.0501) << " m" << endl;
// 2.0501 km as 2050.1 m
cout << " 25.0 mm as " << convert<milli, base>(25.0) << " m" << endl;
// 25.0 mm as 0.025m
cout << " 25.0 mm as " << convert<milli, centi>(25.0) << " cm" << endl;
// 25.0 mm as 2.5cm
cout << " 350 cm as " << convert<centi, kilo>(350.0) << " km" << endl;
// 350 cm as 0.0035 km
cout << " 2 mile as " << convert<mile, kilo>(2.) << " km" << endl;
// 2 mile as 3.21869 km
system_clock, steady_clock, high_resolution_clock.time_point is a template class specific for a clock.
duration is a template class specific for representation and a period.
typedef duration<integer_type, ratio<60>> minutes; typedef duration<integer_type, milli> milliseconds; // milli as typedef ratio<1, 1000> milli;
Example:
// get the current time : chrono::system_clock::time_point now = chrono::system_clock::now(); chrono::system_clock::time_point later = now + chrono::hours(1); // in one hour auto diff1 = later - now; // in chrono::system_clock::duration chrono::minutes diff2 = chrono::duration_cast<chrono::minutes>(later-now); cout << "difference in min: " << diff2.count() << endl; // difference in min : 60 typedef chrono::duration<double, ratio<3600,1>> dhours; auto diff3 = chrono::duration_cast<dhours>(later-chrono::system_clock::now()); cout << "difference in hours: " << diff3.count() << endl; // difference in hours : 0.999999
generalization of std::pair
tuple<int, double, string> var(1, 3.14, "Hallo");
int i = get<0>(var);
double d = get<1>(var);
get<2>(var) = "good bye";
Member access with compile time generated assessors get<N>();
(No iteration over elements at runtime.)
Prefer the usage of make_tuple as you should prefer make_pair (without explicit template arguments).
tuple<int, double, string> foo()
{
return make_tuple(1, 3.14, "C++");
}
Assign multiple variables to a tuple (or pair).
double d;
int i;
string s;
tie(i, d, s) = foo();
assert(i == 1 && d == 3.14 && s = "C++");
The combination of tuple and tie add multiple result values to C++.
STL:
/
#